3.1951 \(\int \frac{1}{(d+e x)^2 \sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=111 \[ \frac{4 c d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 (d+e x) \left (c d^2-a e^2\right )^2}+\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 (d+e x)^2 \left (c d^2-a e^2\right )} \]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(c*d^2 - a*e^2)*(d + e*x)^2) + (4*c*d*Sqrt[a*d*e + (c*d^2 +
 a*e^2)*x + c*d*e*x^2])/(3*(c*d^2 - a*e^2)^2*(d + e*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0470202, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.054, Rules used = {658, 650} \[ \frac{4 c d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 (d+e x) \left (c d^2-a e^2\right )^2}+\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 (d+e x)^2 \left (c d^2-a e^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(c*d^2 - a*e^2)*(d + e*x)^2) + (4*c*d*Sqrt[a*d*e + (c*d^2 +
 a*e^2)*x + c*d*e*x^2])/(3*(c*d^2 - a*e^2)^2*(d + e*x))

Rule 658

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a +
 b*x + c*x^2)^(p + 1))/((m + p + 1)*(2*c*d - b*e)), x] + Dist[(c*Simplify[m + 2*p + 2])/((m + p + 1)*(2*c*d -
b*e)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c
, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2], 0]

Rule 650

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((p + 1)*(2*c*d - b*e)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
 EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac{2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right ) (d+e x)^2}+\frac{(2 c d) \int \frac{1}{(d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 \left (c d^2-a e^2\right )}\\ &=\frac{2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right ) (d+e x)^2}+\frac{4 c d \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right )^2 (d+e x)}\\ \end{align*}

Mathematica [A]  time = 0.0405676, size = 61, normalized size = 0.55 \[ \frac{2 \sqrt{(d+e x) (a e+c d x)} \left (c d (3 d+2 e x)-a e^2\right )}{3 (d+e x)^2 \left (c d^2-a e^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(-(a*e^2) + c*d*(3*d + 2*e*x)))/(3*(c*d^2 - a*e^2)^2*(d + e*x)^2)

________________________________________________________________________________________

Maple [A]  time = 0.044, size = 89, normalized size = 0.8 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( -2\,cdex+a{e}^{2}-3\,c{d}^{2} \right ) }{ \left ( 3\,ex+3\,d \right ) \left ({a}^{2}{e}^{4}-2\,ac{d}^{2}{e}^{2}+{c}^{2}{d}^{4} \right ) }{\frac{1}{\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

-2/3*(c*d*x+a*e)*(-2*c*d*e*x+a*e^2-3*c*d^2)/(e*x+d)/(a^2*e^4-2*a*c*d^2*e^2+c^2*d^4)/(c*d*e*x^2+a*e^2*x+c*d^2*x
+a*d*e)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.73859, size = 285, normalized size = 2.57 \begin{align*} \frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + 3 \, c d^{2} - a e^{2}\right )}}{3 \,{\left (c^{2} d^{6} - 2 \, a c d^{4} e^{2} + a^{2} d^{2} e^{4} +{\left (c^{2} d^{4} e^{2} - 2 \, a c d^{2} e^{4} + a^{2} e^{6}\right )} x^{2} + 2 \,{\left (c^{2} d^{5} e - 2 \, a c d^{3} e^{3} + a^{2} d e^{5}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + 3*c*d^2 - a*e^2)/(c^2*d^6 - 2*a*c*d^4*e^2 + a^2*d
^2*e^4 + (c^2*d^4*e^2 - 2*a*c*d^2*e^4 + a^2*e^6)*x^2 + 2*(c^2*d^5*e - 2*a*c*d^3*e^3 + a^2*d*e^5)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError